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Abstract
Motivation: Identifying phenotypes based on high-content cellular images is challenging. Conventional
image analysis pipelines for phenotype identification comprise multiple independent steps, with each step
requiring method customization and adjustment of multiple parameters.
Results: Here we present an approach based on a multi-scale convolutional neural network (M-CNN)
that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely
the images’ pixel intensity values. The only parameters in the approach are the weights of the neural
network, which are automatically optimized based on training images. The approach requires no a priori
knowledge or manual customization, and is applicable to single- or multi-channel images displaying
single or multiple cells. We evaluated the classification performance of the approach on eight diverse
benchmark datasets. The approach yielded overall a higher classification accuracy compared to state-of-
the-art results, including those of other deep CNN architectures. In addition to using the network to simply
obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the
network to quantitatively describe the phenotypes. Our study shows that these probability values correlate
with chemical treatment concentrations. This finding validates further our approach and enables chemical
treatment potency estimation via convolutional neural networks.
Availability: The network specifications and solver definitions are provided in Supplementary Software 1.
Contact: william_jose.godinez_navarro@novartis.com, xian-1.zhang@novartis.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
High-content imaging has seen increased application in the fields of
systems biology and drug discovery (Götte et al., 2010; Liberali et al.,
2014; Boutros et al., 2015). The images acquired through microscopy-
based assays provide ample visual information that allows investigating
cellular phenotypes induced by genetic or chemical treatments. Identifying
phenotypes in such cellular images is challenging because of the
inherent complexity of biological processes and the intrinsic variability
of cellular assays. Conventional image analysis approaches for phenotype
identification typically start by extracting features at either the cellular level

via object segmentation (Carpenter et al., 2006; Loo et al., 2007; Matula
et al., 2009; Fuchs et al., 2010; Ljosa et al., 2013) or at the image level via
image content descriptors requiring no segmentation (Huang andMurphy,
2004; Chebira et al., 2007; Orlov et al., 2008; Coelho et al., 2013; Zhou
et al., 2013; Uhlmann et al., 2016). Relevant features are subsequently
selected, normalized, and summarized, and serve as input to a classification
algorithm that predicts the phenotype (Fig. 1a; see also reviews in (Sommer
andGerlich, 2013; Finkbeiner et al., 2015)). Although successfully applied
in various studies, conventional image analysis approaches have certain
limitations. For instance, several steps along the analysis pipeline, such as
object segmentation, dimension reduction, and phenotype classification,
typically require customization to each specific assay using a priori
knowledge, such as the geometric properties of the expected phenotypes.
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Fig. 1. Comparison between a conventional image analysis pipeline and the proposed approach based on a multi-scale convolutional neural network (M-CNN). (a) Starting from the raw
image data, a conventional pipeline workflow carries out a series of independent data analysis steps that culminates with a prediction for the phenotype classes. Each step involves method
customization as well as parameter adjustments. (b) The M-CNN approach instead classifies the raw image data into phenotypes in one unbiased and automatic step. The parameters in the
approach correspond to the weights of the neural network and these are automatically optimized based on training images.

are acquired at different magnification factors), phenotypes are generally
evident at different spatial levels in the image data. For the convolutional
layers, if the size of the kernel does not cover the spatial extent of a relevant
geometric pattern, the network might not learn that pattern. Typical sizes
for the kernels at the first convolutional layer are relatively small (e.g., 3×
3 pixels (Simonyan and Zisserman, 2015; Ronneberger et al., 2015) and so
these do not capture phenotypes observed over a large spatial region (e.g.,
elongated cells covering regions of about 200 × 200 pixels). In classical
convolutional architectures, such as AlexNet (Krizhevsky et al., 2012),
the pooling layers effectively increase the spatial extent of the kernels at
subsequent convolutional layers, with subsequent layers capturing patterns
at increasingly coarse scales. This sequential multi-scale approach should
in principle help the network to capture large scale patterns. However,
either a large number of pooling steps or very strong pooling factors
would be needed to capture phenotypes observed over a large spatial
region. The number of pooling steps and pooling factors would also
need adjustment based on the spatial extent of the phenotype. Further,
the deeper convolutional layers do not operate on the original image data
and so features at coarser scales directly from the original image data
are not computed. Another strategy to cope with large-scale phenotypes
is to increase the size of the kernels, possibly in parallel within a single
convolutional layer (e.g., (Szegedy et al., 2015)). This strategy however
increases the number of the parameters and the computation time, aswell as
introduces severe artefacts at the borders of the kernel maps. Additionally,
the kernel sizes might need to be adjusted based on the size of the relevant
patterns of interest, whichmight be difficult to estimate accurately a priori.
A final strategy to detect phenotypes observed over a large spatial region
would be to downscale the original image prior to feeding it to the network,
but this would discard the finer visual details of the phenotypes.
In order to capture cellular phenotypes at different spatial scales,

we developed a multi-scale convolutional neural network (M-CNN)
architecture (Fig. 2) that, in comparison to more classical architectures
(e.g., (Krizhevsky et al., 2012)), carries out a parallel multi-scale analysis
of the image over a large number of scales. Previous parallel multi-scale
approaches involve training several independent CNNs, with each network
taking as input a version of the image at a different scale (Buyssens et al.,
2012). We, instead, developed a single network architecture that processes
multiple scales of an image over parallel sequences of convolutional layers
(Kamnitsas et al., 2017; Farabet et al., 2013). Given an original image
with spatial dimensionsw ×h, we obtain a scaled image with dimensions
(w/s × h/s) via a subsampling operation. In total we consider seven
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Fig. 2. Schematic overview the multi-scale convolutional neural network (M-CNN)
architecture. Starting from amulti-channel input image, the approach subsamples the image
into seven scales (pooling operation). Each scaled version of the image serves as input to
a convolution layer, where the network emphasizes a geometric pattern, which is learned
during a prior training stage (convolution operation). Each convolution operation results
in a kernel map, where a specific geometric pattern is further highlighted by applying a
rectification step (ReLU; rectified linear unit). Kernel maps computed across all scales are
mapped to a common scale and combined through a final convolutional layer. The resulting
kernel maps are passed onto a fully connected layer (inner product operation) whereupon
the output layer generates a probability value for each phenotype class. For simplicity, only
example scales, kernel maps, and operations are shown.

values for s: 1, 2, 4, 8, 16, 32, and 64. The values are selected based on
a geometric series that covers an exponential range of scales (Lindeberg,
1998). Thenetwork takes as input all seven scaled versions of the image and
processes each scaled image with a sequence of three convolutional layers
that constitute a convolutional pathway. Each convolutional pathway at
each scale operates independently from the others and emphasizes patterns
emerging at a particular scale. We use a fixed size (5 × 5 pixels) for the
kernels in all pathways and in all layers. At the end of each pathway, the
resulting kernel maps are scaled to the coarsest scale through a pooling
step. To combine the information from the different scales, the pooled
kernel maps from all pathways are concatenated and serve as input to a
final convolutional layer that operates pixel-wise through the maps. The
concatenation of the maps and subsequent convolution therefore allows
the network to determine how fine and coarse features are spatially co-
localized. The kernel maps from the last convolutional layer are passed
to a fully connected layer with 512 units. The activation levels of these

The joint optimisation of all parameters across the entire
[classical] analysis pipeline remains challenging (page 2)

A CNN-based approach that [...] in one cohesive step,
classifies cellular images into phenotypes (page 2)
See also Orlov et al. (2008) or Uhlmann and Singh (2016)
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Fig. 1. Comparison between a conventional image analysis pipeline and the proposed approach based on a multi-scale convolutional neural network (M-CNN). (a) Starting from the raw
image data, a conventional pipeline workflow carries out a series of independent data analysis steps that culminates with a prediction for the phenotype classes. Each step involves method
customization as well as parameter adjustments. (b) The M-CNN approach instead classifies the raw image data into phenotypes in one unbiased and automatic step. The parameters in the
approach correspond to the weights of the neural network and these are automatically optimized based on training images.

are acquired at different magnification factors), phenotypes are generally
evident at different spatial levels in the image data. For the convolutional
layers, if the size of the kernel does not cover the spatial extent of a relevant
geometric pattern, the network might not learn that pattern. Typical sizes
for the kernels at the first convolutional layer are relatively small (e.g., 3×
3 pixels (Simonyan and Zisserman, 2015; Ronneberger et al., 2015) and so
these do not capture phenotypes observed over a large spatial region (e.g.,
elongated cells covering regions of about 200 × 200 pixels). In classical
convolutional architectures, such as AlexNet (Krizhevsky et al., 2012),
the pooling layers effectively increase the spatial extent of the kernels at
subsequent convolutional layers, with subsequent layers capturing patterns
at increasingly coarse scales. This sequential multi-scale approach should
in principle help the network to capture large scale patterns. However,
either a large number of pooling steps or very strong pooling factors
would be needed to capture phenotypes observed over a large spatial
region. The number of pooling steps and pooling factors would also
need adjustment based on the spatial extent of the phenotype. Further,
the deeper convolutional layers do not operate on the original image data
and so features at coarser scales directly from the original image data
are not computed. Another strategy to cope with large-scale phenotypes
is to increase the size of the kernels, possibly in parallel within a single
convolutional layer (e.g., (Szegedy et al., 2015)). This strategy however
increases the number of the parameters and the computation time, aswell as
introduces severe artefacts at the borders of the kernel maps. Additionally,
the kernel sizes might need to be adjusted based on the size of the relevant
patterns of interest, whichmight be difficult to estimate accurately a priori.
A final strategy to detect phenotypes observed over a large spatial region
would be to downscale the original image prior to feeding it to the network,
but this would discard the finer visual details of the phenotypes.
In order to capture cellular phenotypes at different spatial scales,

we developed a multi-scale convolutional neural network (M-CNN)
architecture (Fig. 2) that, in comparison to more classical architectures
(e.g., (Krizhevsky et al., 2012)), carries out a parallel multi-scale analysis
of the image over a large number of scales. Previous parallel multi-scale
approaches involve training several independent CNNs, with each network
taking as input a version of the image at a different scale (Buyssens et al.,
2012). We, instead, developed a single network architecture that processes
multiple scales of an image over parallel sequences of convolutional layers
(Kamnitsas et al., 2017; Farabet et al., 2013). Given an original image
with spatial dimensionsw ×h, we obtain a scaled image with dimensions
(w/s × h/s) via a subsampling operation. In total we consider seven
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Fig. 2. Schematic overview the multi-scale convolutional neural network (M-CNN)
architecture. Starting from amulti-channel input image, the approach subsamples the image
into seven scales (pooling operation). Each scaled version of the image serves as input to
a convolution layer, where the network emphasizes a geometric pattern, which is learned
during a prior training stage (convolution operation). Each convolution operation results
in a kernel map, where a specific geometric pattern is further highlighted by applying a
rectification step (ReLU; rectified linear unit). Kernel maps computed across all scales are
mapped to a common scale and combined through a final convolutional layer. The resulting
kernel maps are passed onto a fully connected layer (inner product operation) whereupon
the output layer generates a probability value for each phenotype class. For simplicity, only
example scales, kernel maps, and operations are shown.

values for s: 1, 2, 4, 8, 16, 32, and 64. The values are selected based on
a geometric series that covers an exponential range of scales (Lindeberg,
1998). Thenetwork takes as input all seven scaled versions of the image and
processes each scaled image with a sequence of three convolutional layers
that constitute a convolutional pathway. Each convolutional pathway at
each scale operates independently from the others and emphasizes patterns
emerging at a particular scale. We use a fixed size (5 × 5 pixels) for the
kernels in all pathways and in all layers. At the end of each pathway, the
resulting kernel maps are scaled to the coarsest scale through a pooling
step. To combine the information from the different scales, the pooled
kernel maps from all pathways are concatenated and serve as input to a
final convolutional layer that operates pixel-wise through the maps. The
concatenation of the maps and subsequent convolution therefore allows
the network to determine how fine and coarse features are spatially co-
localized. The kernel maps from the last convolutional layer are passed
to a fully connected layer with 512 units. The activation levels of these
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[classical] analysis pipeline remains challenging (page 2)
A CNN-based approach that [...] in one cohesive step,
classifies cellular images into phenotypes (page 2)

See also Orlov et al. (2008) or Uhlmann and Singh (2016)

Joseph Boyd Journal Club 15/05/18 3 / 21



Per-cell vs. per-image analysis

A Multi-Scale Convolutional Neural Network for Phenotyping High-Content Cellular Images 3

Object
detection

Input image Cellular objects Transformed features

a

b

Input image

Feature
extraction

Cellular features

Selection &
reduction

Classification

Phenotype probability

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Phenotype probabilityMulti-scale convolutional neural network

Fig. 1. Comparison between a conventional image analysis pipeline and the proposed approach based on a multi-scale convolutional neural network (M-CNN). (a) Starting from the raw
image data, a conventional pipeline workflow carries out a series of independent data analysis steps that culminates with a prediction for the phenotype classes. Each step involves method
customization as well as parameter adjustments. (b) The M-CNN approach instead classifies the raw image data into phenotypes in one unbiased and automatic step. The parameters in the
approach correspond to the weights of the neural network and these are automatically optimized based on training images.
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evident at different spatial levels in the image data. For the convolutional
layers, if the size of the kernel does not cover the spatial extent of a relevant
geometric pattern, the network might not learn that pattern. Typical sizes
for the kernels at the first convolutional layer are relatively small (e.g., 3×
3 pixels (Simonyan and Zisserman, 2015; Ronneberger et al., 2015) and so
these do not capture phenotypes observed over a large spatial region (e.g.,
elongated cells covering regions of about 200 × 200 pixels). In classical
convolutional architectures, such as AlexNet (Krizhevsky et al., 2012),
the pooling layers effectively increase the spatial extent of the kernels at
subsequent convolutional layers, with subsequent layers capturing patterns
at increasingly coarse scales. This sequential multi-scale approach should
in principle help the network to capture large scale patterns. However,
either a large number of pooling steps or very strong pooling factors
would be needed to capture phenotypes observed over a large spatial
region. The number of pooling steps and pooling factors would also
need adjustment based on the spatial extent of the phenotype. Further,
the deeper convolutional layers do not operate on the original image data
and so features at coarser scales directly from the original image data
are not computed. Another strategy to cope with large-scale phenotypes
is to increase the size of the kernels, possibly in parallel within a single
convolutional layer (e.g., (Szegedy et al., 2015)). This strategy however
increases the number of the parameters and the computation time, aswell as
introduces severe artefacts at the borders of the kernel maps. Additionally,
the kernel sizes might need to be adjusted based on the size of the relevant
patterns of interest, whichmight be difficult to estimate accurately a priori.
A final strategy to detect phenotypes observed over a large spatial region
would be to downscale the original image prior to feeding it to the network,
but this would discard the finer visual details of the phenotypes.
In order to capture cellular phenotypes at different spatial scales,

we developed a multi-scale convolutional neural network (M-CNN)
architecture (Fig. 2) that, in comparison to more classical architectures
(e.g., (Krizhevsky et al., 2012)), carries out a parallel multi-scale analysis
of the image over a large number of scales. Previous parallel multi-scale
approaches involve training several independent CNNs, with each network
taking as input a version of the image at a different scale (Buyssens et al.,
2012). We, instead, developed a single network architecture that processes
multiple scales of an image over parallel sequences of convolutional layers
(Kamnitsas et al., 2017; Farabet et al., 2013). Given an original image
with spatial dimensionsw ×h, we obtain a scaled image with dimensions
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Fig. 2. Schematic overview the multi-scale convolutional neural network (M-CNN)
architecture. Starting from amulti-channel input image, the approach subsamples the image
into seven scales (pooling operation). Each scaled version of the image serves as input to
a convolution layer, where the network emphasizes a geometric pattern, which is learned
during a prior training stage (convolution operation). Each convolution operation results
in a kernel map, where a specific geometric pattern is further highlighted by applying a
rectification step (ReLU; rectified linear unit). Kernel maps computed across all scales are
mapped to a common scale and combined through a final convolutional layer. The resulting
kernel maps are passed onto a fully connected layer (inner product operation) whereupon
the output layer generates a probability value for each phenotype class. For simplicity, only
example scales, kernel maps, and operations are shown.

values for s: 1, 2, 4, 8, 16, 32, and 64. The values are selected based on
a geometric series that covers an exponential range of scales (Lindeberg,
1998). Thenetwork takes as input all seven scaled versions of the image and
processes each scaled image with a sequence of three convolutional layers
that constitute a convolutional pathway. Each convolutional pathway at
each scale operates independently from the others and emphasizes patterns
emerging at a particular scale. We use a fixed size (5 × 5 pixels) for the
kernels in all pathways and in all layers. At the end of each pathway, the
resulting kernel maps are scaled to the coarsest scale through a pooling
step. To combine the information from the different scales, the pooled
kernel maps from all pathways are concatenated and serve as input to a
final convolutional layer that operates pixel-wise through the maps. The
concatenation of the maps and subsequent convolution therefore allows
the network to determine how fine and coarse features are spatially co-
localized. The kernel maps from the last convolutional layer are passed
to a fully connected layer with 512 units. The activation levels of these
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Fig. 1. Comparison between a conventional image analysis pipeline and the proposed approach based on a multi-scale convolutional neural network (M-CNN). (a) Starting from the raw
image data, a conventional pipeline workflow carries out a series of independent data analysis steps that culminates with a prediction for the phenotype classes. Each step involves method
customization as well as parameter adjustments. (b) The M-CNN approach instead classifies the raw image data into phenotypes in one unbiased and automatic step. The parameters in the
approach correspond to the weights of the neural network and these are automatically optimized based on training images.

are acquired at different magnification factors), phenotypes are generally
evident at different spatial levels in the image data. For the convolutional
layers, if the size of the kernel does not cover the spatial extent of a relevant
geometric pattern, the network might not learn that pattern. Typical sizes
for the kernels at the first convolutional layer are relatively small (e.g., 3×
3 pixels (Simonyan and Zisserman, 2015; Ronneberger et al., 2015) and so
these do not capture phenotypes observed over a large spatial region (e.g.,
elongated cells covering regions of about 200 × 200 pixels). In classical
convolutional architectures, such as AlexNet (Krizhevsky et al., 2012),
the pooling layers effectively increase the spatial extent of the kernels at
subsequent convolutional layers, with subsequent layers capturing patterns
at increasingly coarse scales. This sequential multi-scale approach should
in principle help the network to capture large scale patterns. However,
either a large number of pooling steps or very strong pooling factors
would be needed to capture phenotypes observed over a large spatial
region. The number of pooling steps and pooling factors would also
need adjustment based on the spatial extent of the phenotype. Further,
the deeper convolutional layers do not operate on the original image data
and so features at coarser scales directly from the original image data
are not computed. Another strategy to cope with large-scale phenotypes
is to increase the size of the kernels, possibly in parallel within a single
convolutional layer (e.g., (Szegedy et al., 2015)). This strategy however
increases the number of the parameters and the computation time, aswell as
introduces severe artefacts at the borders of the kernel maps. Additionally,
the kernel sizes might need to be adjusted based on the size of the relevant
patterns of interest, whichmight be difficult to estimate accurately a priori.
A final strategy to detect phenotypes observed over a large spatial region
would be to downscale the original image prior to feeding it to the network,
but this would discard the finer visual details of the phenotypes.
In order to capture cellular phenotypes at different spatial scales,

we developed a multi-scale convolutional neural network (M-CNN)
architecture (Fig. 2) that, in comparison to more classical architectures
(e.g., (Krizhevsky et al., 2012)), carries out a parallel multi-scale analysis
of the image over a large number of scales. Previous parallel multi-scale
approaches involve training several independent CNNs, with each network
taking as input a version of the image at a different scale (Buyssens et al.,
2012). We, instead, developed a single network architecture that processes
multiple scales of an image over parallel sequences of convolutional layers
(Kamnitsas et al., 2017; Farabet et al., 2013). Given an original image
with spatial dimensionsw ×h, we obtain a scaled image with dimensions
(w/s × h/s) via a subsampling operation. In total we consider seven
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Fig. 2. Schematic overview the multi-scale convolutional neural network (M-CNN)
architecture. Starting from amulti-channel input image, the approach subsamples the image
into seven scales (pooling operation). Each scaled version of the image serves as input to
a convolution layer, where the network emphasizes a geometric pattern, which is learned
during a prior training stage (convolution operation). Each convolution operation results
in a kernel map, where a specific geometric pattern is further highlighted by applying a
rectification step (ReLU; rectified linear unit). Kernel maps computed across all scales are
mapped to a common scale and combined through a final convolutional layer. The resulting
kernel maps are passed onto a fully connected layer (inner product operation) whereupon
the output layer generates a probability value for each phenotype class. For simplicity, only
example scales, kernel maps, and operations are shown.

values for s: 1, 2, 4, 8, 16, 32, and 64. The values are selected based on
a geometric series that covers an exponential range of scales (Lindeberg,
1998). Thenetwork takes as input all seven scaled versions of the image and
processes each scaled image with a sequence of three convolutional layers
that constitute a convolutional pathway. Each convolutional pathway at
each scale operates independently from the others and emphasizes patterns
emerging at a particular scale. We use a fixed size (5 × 5 pixels) for the
kernels in all pathways and in all layers. At the end of each pathway, the
resulting kernel maps are scaled to the coarsest scale through a pooling
step. To combine the information from the different scales, the pooled
kernel maps from all pathways are concatenated and serve as input to a
final convolutional layer that operates pixel-wise through the maps. The
concatenation of the maps and subsequent convolution therefore allows
the network to determine how fine and coarse features are spatially co-
localized. The kernel maps from the last convolutional layer are passed
to a fully connected layer with 512 units. The activation levels of these
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Fig. 1. Comparison between a conventional image analysis pipeline and the proposed approach based on a multi-scale convolutional neural network (M-CNN). (a) Starting from the raw
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are acquired at different magnification factors), phenotypes are generally
evident at different spatial levels in the image data. For the convolutional
layers, if the size of the kernel does not cover the spatial extent of a relevant
geometric pattern, the network might not learn that pattern. Typical sizes
for the kernels at the first convolutional layer are relatively small (e.g., 3×
3 pixels (Simonyan and Zisserman, 2015; Ronneberger et al., 2015) and so
these do not capture phenotypes observed over a large spatial region (e.g.,
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the pooling layers effectively increase the spatial extent of the kernels at
subsequent convolutional layers, with subsequent layers capturing patterns
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in principle help the network to capture large scale patterns. However,
either a large number of pooling steps or very strong pooling factors
would be needed to capture phenotypes observed over a large spatial
region. The number of pooling steps and pooling factors would also
need adjustment based on the spatial extent of the phenotype. Further,
the deeper convolutional layers do not operate on the original image data
and so features at coarser scales directly from the original image data
are not computed. Another strategy to cope with large-scale phenotypes
is to increase the size of the kernels, possibly in parallel within a single
convolutional layer (e.g., (Szegedy et al., 2015)). This strategy however
increases the number of the parameters and the computation time, aswell as
introduces severe artefacts at the borders of the kernel maps. Additionally,
the kernel sizes might need to be adjusted based on the size of the relevant
patterns of interest, whichmight be difficult to estimate accurately a priori.
A final strategy to detect phenotypes observed over a large spatial region
would be to downscale the original image prior to feeding it to the network,
but this would discard the finer visual details of the phenotypes.
In order to capture cellular phenotypes at different spatial scales,

we developed a multi-scale convolutional neural network (M-CNN)
architecture (Fig. 2) that, in comparison to more classical architectures
(e.g., (Krizhevsky et al., 2012)), carries out a parallel multi-scale analysis
of the image over a large number of scales. Previous parallel multi-scale
approaches involve training several independent CNNs, with each network
taking as input a version of the image at a different scale (Buyssens et al.,
2012). We, instead, developed a single network architecture that processes
multiple scales of an image over parallel sequences of convolutional layers
(Kamnitsas et al., 2017; Farabet et al., 2013). Given an original image
with spatial dimensionsw ×h, we obtain a scaled image with dimensions
(w/s × h/s) via a subsampling operation. In total we consider seven

Channel 1

Channel 2

Scale 1

Scale 7

Scale 2 Class 1

 

Class 2

Class 3

Input layer Convolutional layers Output layer

Convolutions and ReLU
Pooling

Inner product

Fig. 2. Schematic overview the multi-scale convolutional neural network (M-CNN)
architecture. Starting from amulti-channel input image, the approach subsamples the image
into seven scales (pooling operation). Each scaled version of the image serves as input to
a convolution layer, where the network emphasizes a geometric pattern, which is learned
during a prior training stage (convolution operation). Each convolution operation results
in a kernel map, where a specific geometric pattern is further highlighted by applying a
rectification step (ReLU; rectified linear unit). Kernel maps computed across all scales are
mapped to a common scale and combined through a final convolutional layer. The resulting
kernel maps are passed onto a fully connected layer (inner product operation) whereupon
the output layer generates a probability value for each phenotype class. For simplicity, only
example scales, kernel maps, and operations are shown.

values for s: 1, 2, 4, 8, 16, 32, and 64. The values are selected based on
a geometric series that covers an exponential range of scales (Lindeberg,
1998). Thenetwork takes as input all seven scaled versions of the image and
processes each scaled image with a sequence of three convolutional layers
that constitute a convolutional pathway. Each convolutional pathway at
each scale operates independently from the others and emphasizes patterns
emerging at a particular scale. We use a fixed size (5 × 5 pixels) for the
kernels in all pathways and in all layers. At the end of each pathway, the
resulting kernel maps are scaled to the coarsest scale through a pooling
step. To combine the information from the different scales, the pooled
kernel maps from all pathways are concatenated and serve as input to a
final convolutional layer that operates pixel-wise through the maps. The
concatenation of the maps and subsequent convolution therefore allows
the network to determine how fine and coarse features are spatially co-
localized. The kernel maps from the last convolutional layer are passed
to a fully connected layer with 512 units. The activation levels of these
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Model evaluation - hard and soft

Network produces Np = 13 probabilities per replicate / drug /
concentration / field

Hard classification: Predict MOA in a leave-one-out cross
validation scheme

ŷ = argmax
k

p(y = k |x)

Soft classification: Track probabilities prf (y = k) over
titration series as median over replicate r of median over field
f of view

ρrfk = med{med{prf (y = k)}f }r
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Fig. 5. Confusion matrix and example concentration response curves for the BBBC021
data. (a) Performance of the M-CNN architecture for classifying previously unseen test
images into 12 MoA classes. Each row of the confusion matrix shows the true MoA
annotation while the columns show the predictions from the M-CNN architecture. Entries
are shaded in red and the shading intensity correlates with the relative magnitude of the
values. Entries without numbers indicate values of zero. The accuracies for each MoA
class over cross-validation are shown next to each row. Example three-channel images
(Actin, red; Tubulin, green; Nuclei, blue) from each class are shown below the table.
(b) Concentration response curves for four example compounds computed based on the
network’s soft-classification predictions. The predicted probability (y-axis) for 12 MoA
classes plus the DMSO class (each class represented by a colored line) is plotted against the
concentration (x-axis, log scale). Most classes are not visible since they are close to zero
and overlap with each other. Themore prominent classes are labeled with the corresponding
DMSO or MoA abbreviations (cf. Fig. 5a). The dots and error bars represent the median
and median absolute deviation over the experimental replicates (n = 2 for Alsterpaullone
and n = 3 for the other three compounds). Images corresponding to data points marked by
dashed circles are part of the training data.

(hard classification prediction). The predicted MoA classes of the held-
out compound at different concentrations were compared with the original
annotations to evaluate the accuracy (see Section 2.4 and Supplementary
Table 3).
Fig. 5a displays the computed confusion matrix based on the

aggregated results over all 38 compounds. The classification accuracies
for each MoA class are displayed on the right, the number of correctly
classified treatments (compound-concentration pairs) is shown on the
diagonal, and all zero values are omitted for simplicity. The M-CNN
architecture achieved perfect classification for 9 out of 12MoAclasses. For
the remaining three MoA classes (microtubule destabilizers, microtubule
stabilizers and protein degradation), the accuracies were 79%, 89% and
57% respectively, with only a handful of misclassified treatments. In
six of the seven misclassified treatments, the MoA with the second-
best probability corresponds to the true MoA (see Supplementary Table
3). These results are similar to the best method evaluated in a previous
benchmark study (Ljosa et al., 2013), which deployed a customized and
manually adjusted analysis pipeline (viz. segment cellular objects, extract
pre-defined features, perform factor analysis, and apply a nearest-neighbor
classifier for phenotype prediction). Further, our approach outperformed
a conventional pipeline feeding feature vectors to a deep learning method
(viz. deep auto-encoders) for classification (Kandaswamy et al., 2016),

which achieved an overall classification accuracy of 77%, as well as
other deep CNN architectures, namely AlexNet and GoogleNet, which
achieve accuracies of 65% and 86%, respectively. The results highlight
the importance of analyzing the image data directly via a parallel multi-
scale convolutional strategy as performed in the M-CNN architecture as
well as the ability of the proposed architecture to generalize to compounds
left out from the training process.
We then proceeded to describe the MoA class of compounds

and concentrations without any annotation using the soft classification
predictions of theM-CNNarchitecture.Wefirst trained a singlemulti-scale
convolutional neural network with 1684 original images (approximately
13% of the data) coming from all annotated data (without holding out
any compounds) plus images from the DMSO mock treatments. The
network generated predictions for the 12 annotated MoA classes and
a DMSO class. The number of units at the output layer of the neural
network was therefore set to 13. We then applied the trained model to the
whole data collection of 113 compounds at eight concentrations and three
replicates to predict their mechanism of action. The computed probability
values representing the soft-classification predictions for all treatments are
provided in Supplementary Table 4.
We selected four example compounds and plotted the phenotype

probability for the 13 classes against the compound concentration (Fig.
5b). Multiple fields and replicates were summarized by calculating the
median and the median absolute deviation. The first example, Floxuridine,
was tested at eight concentrations ranging from 0.03 to 100 µM.
Concentrations 10 and 30 µM were annotated as DNA replication (DR)
in the training data (marked with dashed circles). The neural network
predicted the other concentrations to have the same phenotype with
high probabilities and low replicate variability except for the lowest
concentration at 0.03 µM (Fig. 5b). This result is consistent with the
reported EC50 of Floxuridine around 0.01 µM (Raić-Malić et al., 2000).
In the second example, Nocodazole was tested at eight concentrations
between 0.001 and 3 µM (Fig. 5b), with concentrations 1 and 3 µM
labeled as microtubule destabilizers (MD) in the training data (marked
with dashed circles). At the lowest concentrations (viz. 0.001, 0.003 and
0.01 µM) DMSO was predicted as the dominant class, indicating that
at these concentrations the compound did not induce any distinguishable
effect. At 0.03 µM, the protein degradation (PD) phenotype was slightly
prevalent. As the concentration increased, the microtubule destabilizers
(MD) MoA became gradually dominant. The concentration at which we
observe the half maximal response for the MD MoA also agrees with
previously published EC50 values (Kiselyov et al., 2010). In the third
example, Alsterpaullone was tested at eight concentrations between 0.03
and 30 µM (Fig. 5b). Concentrations 1 and 3 µM were labeled as kinase
inhibitor (KI) in the training data. The model was able to predict a
concentration-dependent response for the kinase inhibitor MoA class over
the first seven concentrations. Interestingly, at the highest concentration
(30 µM) the neural network predicted DNA damage (DD) as the dominant
MoA. This is likely due to the apoptosis-inducing effect of this compound
at this concentration (Lahusen et al., 2003; Faria et al., 2015). For the
final example, Hydroxyurea, none of the concentrations were included in
the training dataset. Here the model predicted a concentration-dependent
MoA of DNA damage (DD), with an EC50 between 100 and 400 µM,
which is consistent with previous studies (Šimunović et al., 2009; Banh
and Hales, 2013).

4 Conclusion
We have developed an approach based on a multi-scale convolutional
neural network (M-CNN) to analyze high-content cellular images. The
approach yields, in a single and cohesive step, a phenotype prediction
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Introduction
Most often, the current model of drug discovery implies 
prior identification of a target. This identification allows 
primary biomolecular screens to focus on a narrowed set of 
mechanisms of action (MOAs). This approach has shown 
some success, especially in identifying best-in-class drugs. 
However, this strategy generates the production of increas-
ingly weak first-in-class drugs, along with ever higher 
costs. Furthermore, despite widespread adoption of the  
target-based approach by pharmaceutical companies, an 
alternative approach, named phenotypic, has brought twice 
the amount of compounds of a new therapeutic class (i.e., 
based on a new MOA) to the market in recent years.1

Nevertheless, a major challenge of phenotypic approaches 
remains the posterior identification of the MOA of a lead com-
pound having a desirable effect, for which we have little prior 
information. Various methods have been developed to dig into 
the activity of a compound in a cellular system in order to 
uncover interactions with cell products, including direct bio-
chemical methods, genetic interactions, or computational 
inference.2 However, the precise identification of the efficacy 
target remains a tedious task with little chance of success and 
is largely refractory to systematic analyses.3,5

Inferring the MOA of an unknown compound in a sys-
tematic way by phenotypic similarity has been studied in 
the past.6,7 More recently, it has been formulated as a clas-
sification problem in the phenotypic feature space, using 
either gene expression or morphometric profiles for a low 
number of MOAs.8,10 Drug target associations were pre-
dicted this way and experimentally confirmed,11 suggesting 
a route to identify the action of new therapeutic agents. 
Realistically, rather than precisely identifying the efficacy 
target of each drug, the functional prediction by profiling 
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Multiple Unrelated Morphological Profiling 
Assays
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Abstract
Phenotypic cell–based assays have proven to be efficient at discovering first-in-class therapeutic drugs mainly because they 
allow for scanning a wide spectrum of possible targets at once. However, despite compelling methodological advances, 
posterior identification of a compound’s mechanism of action (MOA) has remained difficult and highly refractory to 
automated analyses. Methods such as the cell painting assay and multiplexing fluorescent dyes to reveal broadly relevant 
cellular components were recently suggested for MOA prediction. We demonstrated that adding fluorescent dyes to a 
single assay has limited impact on MOA prediction accuracy, as monitoring only the nuclei stain could reach compelling 
levels of accuracy. This observation suggested that multiplexed measurements are highly correlated and nuclei stain could 
possibly reflect the general state of the cell. We then hypothesized that combining unrelated and possibly simple cell-based 
assays could bring a solution that would be biologically and technically more relevant to predict a drug target than using a 
single assay multiplexing dyes. We show that such a combination of past screen data could rationally be reused in screening 
facilities to train an ensemble classifier to predict drug targets and prioritize a possibly large list of unknown compound 
hits at once.
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target prediction, high-content screening, mechanism of action, ensemble classifier
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Premise

The contribution of phenotypic screening to the discovery of
first-in-class small-molecule drugs exceeded that of
target-based approaches [in recent years] (page 1, paraphrasing
Swinney & Anthony (2011))

While a complex painting assay on an optimised cell line
represents a compelling approach [...] simple image-based
assays on several cell lines may be more relevant biologically.
(page 2)
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Data and prediction task

9 (distinct) pleural mesothilioma + 1 prostate cancer cell lines

Prestwick dataset (1200 compounds), of which 614 have an
MOA (DrugBank)

Predict MOA (from 113 target classes) in leave-one-out cross
validation scheme from Ljosa et al. (2013)
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Methodology

Following a classical pipeline:

Average per-cell features over well to create phenotypic profile
for each drug k :

profilek =

[
1
N

N∑
n=1
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n1, . . . ,

1
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N∑
n=1

xk
iD

]
where xk

nd is feature d of D for cell n of N for the kth drug.

Train one random forest (30 trees) per cell line (10 forests)

Predict MOA based on combining probabilities (ensemble
prediction)
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Results

6 SLAS Technology  00(0)

facility. Accordingly, we gathered data to test this idea. The 
Results section and Figure 3 describe how combining a 
random set of 10 cell-based image assays with few markers 
can reach better relative accuracy than previously observed 
using a more complex setup. Indeed, in Figure 3, an accu-
racy 11.3 times better than random is reached (with a value 
of 0.10 for 113 genes), while Ljosa et al. 10 obtained an 
accuracy 9.96 times better than random (with a value of 
0.83 for 12 MOAs), reproduced in Figure 1C.

These results suggested that using multiple cell lines instead 
of one is more relevant biologically to predict a drug target 
association. This suggestion matches with the fact that, while 
highly variable, any given human cell line expresses on aver-
age a third of the human genes.19 As a consequence, even with 
a known high affinity, a molecule cannot be found to bind to a 
gene product in cells where this gene is not expressed. 
Therefore, scanning a larger set of expressed genes through 
various cell lines would rationally increase the chances of 
uncovering an existing link between a drug and its target. 
Using multiple cell lines with simple markers instead of mul-
tiple dyes on a single cell line is not only more biologically 
relevant, but also technically sound, as the number of cell lines 
that can be added, in opposition to dyes, is virtually unlimited.

Multiplying cell lines would also be practical, as no 
additional experimental work would be required because 
past screens can be used as a training set. Typically, most 
assays performed on an HCS platform only aim to measure 
a specific phenotype variation, along with the cell count as 
a measure of toxicity.20 This cell count is typically based on 
nucleus staining. Such simple assays are usually cheap, and 
therefore abundantly available across research institutes 
and hospital screening facilities. Some previous work described 
methods where data from high-throughput screening assays 
stored on PubChem were aggregated to build compound 
biological fingerprints.21 They were notably used for bio-
logical hit extension by phenotype similarity. However, that 
approach would not allow us to obtain information on pre-
viously uncharacterized compounds that are newly tested. 
In our approach, we focus on predicting the functions of 
drugs in order to prioritize a list of hits from HCS assays. 
We developed a machine learning framework that con-
structs a classifier from weak learners, each trained on indi-
vidual assays. As random forest classifiers are independently 
trained on each assay, our approach can straightforwardly 
combine assays with a very different nature, number of 
markers, and quantitative features. In practice, an optimal 
set of cell lines could be first identified from the past screens 
of a facility as producing the best ensemble classifier (see 
the training part in Fig. 4); the only requirement is that all 
those screens use the same library of compounds for which 
the molecular actions are known. Ideally, the library would 
include compounds acting on most (if not all) known drug-
gable targets. Prioritizing 200 previously uncharacterized 
compounds from a new HCS campaign would then consist 
of thawing cells from the selected cell lines and treating 
them with the 200 compounds to be characterized (see the 
application part in Fig. 4). Once image analysis and normal-
ization of the features are performed (Fig. 4B,C,F), the 
classifier trained on past assays would produce a vector of 
scores for each of the 200 drugs, indicating what gene is 
most likely to be targeted (Fig. 4G,H).

The presented results demonstrate that each cell line 
brings its bit of additional information that incrementally 

Figure 3. Combining simple assays gradually improves the 
accuracy of target prediction. Plot showing the accuracy 
obtained using an increasing number of cell lines for 
classification. The predicted target for one compound is 
based on an ensemble classifier trained on 1–10 cell lines. The 
accuracy is obtained using a leave-one-out cross-validation 
procedure. Error bars represents standard deviation. The error 
bar obtained for a single cell line shows that accuracy is cell 
line dependent; some cell lines, when taken alone, are more 
predictive than others. For each compound, the ensemble 
classifier outputs a vector where each value represents the 
probability of association with a target. The top 1 voting outputs 
the target corresponding to the mode of this probability 
vector; the predicted target is then compared with the ground-
truth target to determine the accuracy (green line). The top 
5 voting outputs the five most probable targets according to 
the ensemble classifier; the prediction is considered correct 
when the ground-truth target is present in the top 5 (blue line). 
These predictions should be compared with the probability to 
predict the correct target at random, which is 0.09% – 1 over 
113, the number of considered targets. Our approach, using 10 
random cell lines, achieves 25% accuracy of molecular target 
prediction out of 113 targets with the top 5 prediction method 
(blue curve). These results are obtained for 10 cell lines, 614 
compounds, and 113 targets.

Figure: Top-5 and top-1 classification accuracy improves with the
addition of cell lines
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Advances in molecular biology have led to an unprecedented ability to 
profile the gene- and pathway-level changes that occur in disease1–4. 
However, most of this information has yet to be exploited in drug 
development, particularly for drugs that are targeted to patient sub-
populations, that reduce the side effects of existing drugs and that 
provide second-line treatment if drug resistance emerges5,6. One 
strategy for discovering such drugs is to search existing large chemical  
libraries7–13 for new leads whose activity profiles are similar, but not 
identical, to those of proven drugs. These compounds may have dis-
tinct chemical structures and operate through different mechanisms. 
The main challenge when using large chemical libraries is how to 
search them efficiently in ways that scale with the size of the library 
and the desired number of new drug classes. An efficient approach 
would be able to classify compounds into different drug classes  
targeting distinct cellular pathways in a single screening pass.

Purely computational approaches have been used to perform  
virtual screens across multiple mechanisms of action14,15, but  
predictions of chemical mechanism may poorly or nonspecifically pre-
dict biological activity (e.g., a predicted kinase inhibitor could affect 
receptor signaling, cell growth, cytoskeletal structure and many other 
biological processes). Current biochemical screening approaches16 
are not designed for diversifying the repertoire of compounds within 
or across cellular processes in a single-pass screen; rather, multiple 
passes would be required to screen a large compound library, with 
each pass focused on a different target. Likewise, many current  
low-dimensional phenotypic screening approaches use readouts 
that are either too specific (e.g., single target17) or broad (e.g., cell 

proliferation or death18) to distinguish simultaneously among  
different mechanistic modes of action in a single-pass screen.

High-content phenotypic screens hold promise for identifying 
lead compounds across multiple drug classes at a single-pass screen. 
Multiparametric measures of cellular responses are captured and 
summarized succinctly as phenotypic (or cytological) profiles19 
or fingerprints20,21 and used to group compounds by the similar-
ity of their induced cellular responses. Phenotypic profiles have 
proven their usefulness in partitioning drug libraries into functional 
classes and predicting the mechanism of action using guilt by asso-
ciation19,22–25. However, assay costs for current approaches based 
on transcriptomics26,27 or proteomics28–30 are too expensive to be 
scaled routinely to libraries with tens or hundreds of thousands  
of compounds31,32.

High-content imaging13,19,25,33–35 is an appealing modality due to 
its relatively lower costs and ability to monitor systems-level responses 
in individual cells. A key step in every phenotypic screen is the selec-
tion of biomarkers (e.g., antibodies, chemical dyes or genetically 
encoded fluorescent tags). In fluorescent microscopy, only a relatively 
small number of biomarkers can be monitored simultaneously in each 
cell. Multiplexing biomarkers and/or performing additional replicate 
experiments can increase the number of readouts used to probe cel-
lular responses and provide useful information36,37. However, increas-
ing the number of biomarkers can lead to greatly increased costs and 
time for screening. Notably, there is currently no established strategy 
for systematically identifying a minimal biomarker set that can accu-
rately classify compounds across multiple, specified drug classes.

Improving drug discovery with high-content phenotypic 
screens by systematic selection of reporter cell lines
Jungseog Kang1,2,6, Chien-Hsiang Hsu1,3,4,6, Qi Wu1, Shanshan Liu1, Adam D Coster1, Bruce A Posner5,  
Steven J Altschuler1,4 & Lani F Wu1,4

High-content, image-based screens enable the identification of compounds that induce cellular responses similar to those 
of known drugs but through different chemical structures or targets. A central challenge in designing phenotypic screens is 
choosing suitable imaging biomarkers. Here we present a method for systematically identifying optimal reporter cell lines for 
annotating compound libraries (ORACLs), whose phenotypic profiles most accurately classify a training set of known drugs. 
We generate a library of fluorescently tagged reporter cell lines, and let analytical criteria determine which among them—the 
ORACL—best classifies compounds into multiple, diverse drug classes. We demonstrate that an ORACL can functionally annotate 
large compound libraries across diverse drug classes in a single-pass screen and confirm high prediction accuracy by means of 
orthogonal, secondary validation assays. Our approach will increase the efficiency, scale and accuracy of phenotypic screens by 
maximizing their discriminatory power. 
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A three-step process

In a live-cell assay, an optimal cell line is chosen by brute force to
be used in a large-scale screen:

1 Construct library of reporter cell lines

2 Identify optimal reporter cell line for compound libraries
(ORACL)

3 Use ORACL to identify lead compounds in a single-pass screen
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Step 1: library of reporter cell lines

A549 non-small cell lung cancer parent cell line. 93 reporter clones
were produced by:

randomly labeling proteins with yellow fluorescent protein as
an extra exon via viral transfection (central dogma tagging).

The genes can then be identified using 3’RACE (duplicates
discarded)
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Figure 2 Identifying an ORACL that 
distinguishes among drug classes. (a) A parent 
A549 cell line was built with a construct  
(pSeg) to express cytosolic (mCherry) and 
nuclear (H2B-CFP) fluorescent proteins  
to aid in automated cellular region 
identification. A library of diverse reporter  
cell lines were built from this parent line  
using a strategy (CD tagging) that randomly 
incorporated YFP into different proteins (one  
per reporter cell line). Untagged refers to  
the parental pSeg-tagged line that lacks a  
CD tag. (b) Drug classification accuracies for 
each of our 93 CD-tagged reporters (left).  
Mean (black dots) and s.d. (gray bar) of 
prediction accuracies were calculated from 
100 cross-validation studies. Middle: drug-
response profiles of the ORACL and a mediocre 
reporter cell line were visualized by MDS plot 
(top and bottom, tagged for XRCC5 or SEPT11, 
respectively). Each drug (or DMSO) profile is 
represented by a point and colored according 
to the drug classes. Representative cellular 
response images (right) for the indicated drugs 
in the multidimensional scaling (MDS) plots at 
left. The ORACL shows consistent phenotypes 
within drug classes, whereas the mediocre reporter cell line shows inconsistent phenotypes within the same drug classes. Fluorescent reporters: blue, 
CFP-nuclear label; red, mCherry-cytosolic label; green, YFP-CD tag (intensity scale is the same for blue and red, but is adjusted for green per reporter 
cell line). Scale bars, 10 Mm. Drugs: i, epithilone B; ii, nocodazole; iii, apicidin; iv, oxamflatin; v, camptothecin vi, etoposide.

Third, scores were transformed into phenotypic profile vectors: for 
each perturbation, KS scores were concatenated across features to 
form a phenotypic profile. The resulting phenotypic profile succinctly 
summarized the effects of a compound, and could be further extended 
by concatenating profiles from multiple time points, compound con-
centrations or even responses from multiple reporter cell lines.

We first investigated whether compounds from the same class 
would produce relatively similar profiles and whether distinct drug 
classes would result in dissimilar profiles. We treated our six selected 
reporter cell lines (Supplementary Fig. 1) with a small panel of 
test drugs (31 conditions = 5 compounds × 6 different drug classes 
+ 1 DMSO control; Supplementary Table 2) and imaged cellular 
responses every 12 h for 48 h. 100 DMSO profiles were generated from 
randomly selecting cells in control conditions (Online Methods). Heat 
map representations of phenotypic profiles, built by concatenating 
data across our six reporter cell lines, revealed a strong similarity of 
compounds from similar drug classes and, likewise, dissimilar profiles 
for compounds of dissimilar classes (Supplementary Fig. 3). Thus, as 
with profiles built from fixed-cell assays and antibody readouts, we 
observed that profiles based on live-cell readouts produced informa-
tive signatures of drug classes.

To select a small number of time points for more scalable screening, 
we visualized our profiles as time-varying curves by projecting our 
collection of profiles at each time point into three dimensions. The 
resulting time traces showed that the unperturbed (DMSO-treated) 
cells remained in a tight ball (Supplementary Fig. 4, gray curves). 
By contrast, time traces for different classes of drugs moved in differ-
ent directions away from the DMSO origin, with different members 
of each class moving in similar directions (Supplementary Fig. 4). 
Further, time traces were quite similar across replicate experiments 
(solid lines vs. dash lines). The divergence of these time traces from 
one another also suggested that time points of 24 and/or 48 h were 
sufficient for discriminating among drug classes (Supplementary 
Fig. 5). Thus, our results suggested that phenotypic profiles from our 

reporter cell lines can be used to predict drug classes and that only a 
small number of time points might be needed for screening.

Identification of the ORACL
To economize large-scale screens, we next investigated to what degree 
a single reporter cell line and time point could be used to accurately 
discriminate among our different drug classes. This time we treated 
all 93 reporter cell lines with our panel of test drugs, imaged cellular 
responses, and then computed phenotypic profiles for each of the 
reporter cell lines individually using only the final 48 h time point 
after drug treatment. As we used only a single time point, each drug 
profile was a single point in our high-dimensional phenotype space. 
To assess prediction accuracy, we used a cross-validation approach 
in which we randomly removed six test drug profiles (one from each 
of the six classes), computed the centroid of the remaining four drug 
profiles in each class, and assigned each of the six test profiles to its 
nearest centroid. Prediction accuracy was determined by repeating 
this process 100 times and averaging the results across two duplicates 
of the experiment.

We found that prediction accuracy varied dramatically from 
reporter to reporter (random guesses from 1 DMSO + 6 drug classes 
is expected to be ~14% accurate; Fig. 2b, left). As might be expected, 
the untagged (no CD tag) reporter cell line, labeled only with  
cellular region markers, displayed the lowest prediction accuracy 
(~60%). (We note this accuracy is already more than four times better 
than random guessing, which confirmed recent results that morphol-
ogy carries considerable information for predicting drug classes25.) 
Nevertheless, our results also confirmed the intuition that additional 
information from tagged proteins would improve prediction accuracy. 
The top reporter cell line—tagged with XRCC5, a nuclear-localized 
protein that functions in DNA double-strand break repair—displayed 
a high prediction accuracy (94%). This cell line, when compared to 
others, exhibited more similar phenotypic responses for drugs within 
the same class (Fig. 2b, middle and right). An interesting question, 
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Step 2: identification of the ORACL

The 93 reporter cell lines were treated by a small 6 classes × 5
drugs + DMSO reference set

Phenotypic profile created as in Perlman et al. (2004):

profilek =

[
KS(X k

:,1,X
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]
where X k

:,d and X−
:,d is feature d of D of all cells for drug k and

the negative control respectively.
One drug was removed at random from each class and
assigned a class as the nearest centroid of the remaining four
drugs per class
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Figure 2 Identifying an ORACL that 
distinguishes among drug classes. (a) A parent 
A549 cell line was built with a construct  
(pSeg) to express cytosolic (mCherry) and 
nuclear (H2B-CFP) fluorescent proteins  
to aid in automated cellular region 
identification. A library of diverse reporter  
cell lines were built from this parent line  
using a strategy (CD tagging) that randomly 
incorporated YFP into different proteins (one  
per reporter cell line). Untagged refers to  
the parental pSeg-tagged line that lacks a  
CD tag. (b) Drug classification accuracies for 
each of our 93 CD-tagged reporters (left).  
Mean (black dots) and s.d. (gray bar) of 
prediction accuracies were calculated from 
100 cross-validation studies. Middle: drug-
response profiles of the ORACL and a mediocre 
reporter cell line were visualized by MDS plot 
(top and bottom, tagged for XRCC5 or SEPT11, 
respectively). Each drug (or DMSO) profile is 
represented by a point and colored according 
to the drug classes. Representative cellular 
response images (right) for the indicated drugs 
in the multidimensional scaling (MDS) plots at 
left. The ORACL shows consistent phenotypes 
within drug classes, whereas the mediocre reporter cell line shows inconsistent phenotypes within the same drug classes. Fluorescent reporters: blue, 
CFP-nuclear label; red, mCherry-cytosolic label; green, YFP-CD tag (intensity scale is the same for blue and red, but is adjusted for green per reporter 
cell line). Scale bars, 10 Mm. Drugs: i, epithilone B; ii, nocodazole; iii, apicidin; iv, oxamflatin; v, camptothecin vi, etoposide.

Third, scores were transformed into phenotypic profile vectors: for 
each perturbation, KS scores were concatenated across features to 
form a phenotypic profile. The resulting phenotypic profile succinctly 
summarized the effects of a compound, and could be further extended 
by concatenating profiles from multiple time points, compound con-
centrations or even responses from multiple reporter cell lines.

We first investigated whether compounds from the same class 
would produce relatively similar profiles and whether distinct drug 
classes would result in dissimilar profiles. We treated our six selected 
reporter cell lines (Supplementary Fig. 1) with a small panel of 
test drugs (31 conditions = 5 compounds × 6 different drug classes 
+ 1 DMSO control; Supplementary Table 2) and imaged cellular 
responses every 12 h for 48 h. 100 DMSO profiles were generated from 
randomly selecting cells in control conditions (Online Methods). Heat 
map representations of phenotypic profiles, built by concatenating 
data across our six reporter cell lines, revealed a strong similarity of 
compounds from similar drug classes and, likewise, dissimilar profiles 
for compounds of dissimilar classes (Supplementary Fig. 3). Thus, as 
with profiles built from fixed-cell assays and antibody readouts, we 
observed that profiles based on live-cell readouts produced informa-
tive signatures of drug classes.

To select a small number of time points for more scalable screening, 
we visualized our profiles as time-varying curves by projecting our 
collection of profiles at each time point into three dimensions. The 
resulting time traces showed that the unperturbed (DMSO-treated) 
cells remained in a tight ball (Supplementary Fig. 4, gray curves). 
By contrast, time traces for different classes of drugs moved in differ-
ent directions away from the DMSO origin, with different members 
of each class moving in similar directions (Supplementary Fig. 4). 
Further, time traces were quite similar across replicate experiments 
(solid lines vs. dash lines). The divergence of these time traces from 
one another also suggested that time points of 24 and/or 48 h were 
sufficient for discriminating among drug classes (Supplementary 
Fig. 5). Thus, our results suggested that phenotypic profiles from our 

reporter cell lines can be used to predict drug classes and that only a 
small number of time points might be needed for screening.

Identification of the ORACL
To economize large-scale screens, we next investigated to what degree 
a single reporter cell line and time point could be used to accurately 
discriminate among our different drug classes. This time we treated 
all 93 reporter cell lines with our panel of test drugs, imaged cellular 
responses, and then computed phenotypic profiles for each of the 
reporter cell lines individually using only the final 48 h time point 
after drug treatment. As we used only a single time point, each drug 
profile was a single point in our high-dimensional phenotype space. 
To assess prediction accuracy, we used a cross-validation approach 
in which we randomly removed six test drug profiles (one from each 
of the six classes), computed the centroid of the remaining four drug 
profiles in each class, and assigned each of the six test profiles to its 
nearest centroid. Prediction accuracy was determined by repeating 
this process 100 times and averaging the results across two duplicates 
of the experiment.

We found that prediction accuracy varied dramatically from 
reporter to reporter (random guesses from 1 DMSO + 6 drug classes 
is expected to be ~14% accurate; Fig. 2b, left). As might be expected, 
the untagged (no CD tag) reporter cell line, labeled only with  
cellular region markers, displayed the lowest prediction accuracy 
(~60%). (We note this accuracy is already more than four times better 
than random guessing, which confirmed recent results that morphol-
ogy carries considerable information for predicting drug classes25.) 
Nevertheless, our results also confirmed the intuition that additional 
information from tagged proteins would improve prediction accuracy. 
The top reporter cell line—tagged with XRCC5, a nuclear-localized 
protein that functions in DNA double-strand break repair—displayed 
a high prediction accuracy (94%). This cell line, when compared to 
others, exhibited more similar phenotypic responses for drugs within 
the same class (Fig. 2b, middle and right). An interesting question, 
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Figure: The reporter cell line maximising prediction accuracy (94% over
100 repetitions was chosen as the ORACL (XRCC5 DSB-repair protein)
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Step 3: identification of multi-classes hits

The selected ORACL is then tested on a large suite of drug
libraries (10483 drugs total)

This yields ∼ 62000 live-cell images after 24h and 48h and
∼ 60 million cells with ∼ 230 morphological features apiece

Linear discriminant analysis to reduce dimensionality, in which
reference drug clusters are used as nearest neighbour classifier

Confidence scores (based on distance, calibrated using
reference set) calculated for each classification. Compounds
left unclassified when confidence low (p < 0.1)
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outside the scope of this current study, is 
determining why certain reporter cell lines 
are more informative than others.

Identification of multi-classes hits  
with ORACL
We next used our ORACL to perform a large-
scale phenotypic screen of small-molecule 
compound libraries. These libraries included 
the National Cancer Institute (NCI) approved 
oncology drug set IV (101 compounds), the NCI diversity set IV (1,596 
compounds), the NCI natural product set III (117 compounds), the 
Prestwick US Food and Drug Administration–approved drug set 
(1,100 compounds) and 8,000 compounds from University of Texas 
Southwestern Medical Center (UTSW 8K set). All compound libraries 
were assayed at three different concentrations, except the Prestwick 
and UTSW sets, which were assayed at a single concentration due to 
their large sizes. Finally, we included our reference drug set. Our refer-
ence drug set contained the test drug set used to select the ORACL. 
Additionally, to test the ability of the ORACL to identify novel drug 
classes that were not used in its selection, we added a small number of 
drugs in four new drug classes, for a total of ten drug classes affecting 
diverse biological processes (Supplementary Table 2). All 38 reference 
drugs were used at eight serial fivefold dilutions. Finally, to increase 
our chances of identifying compound effects, given the limited number 
of compound concentrations selected, cells were imaged at both 24 
and 48 h (Supplementary Fig. 6). In total, profiles were built from 
~62,000 three-channel images of ~20,000 conditions (derived from 
10,914 compounds and 38 reference drugs at different concentrations 
as well as control conditions), ~60,000,000 identified cellular regions 
and ~230 features per cell, yielding a total of ~1.4 × 1010 data points. 
Our final compound profiles were built by merging data across the 
24- and 48-h time points. As before, these compound profiles can be 
viewed as points in a high-dimensional feature space.

We took a multistep strategy to identify hits. First, we transformed 
feature space and reduced dimensionality to maximally separate our 
reference drug classes from one another. Linear discriminant analysis 
(LDA)40 was applied to our collection of reference drug profiles to 
identify an optimal transform that increased separation of profiles 
across drug classes while decreasing separation of profiles within each 
class. Second, we assigned our unknown compounds to the nearest 
reference drug class. A nearest-neighbor approach was applied to the 
LDA-transformed space to assign each unknown compound to the class 
of its nearest reference drug. Third, we calculated confidence scores, 
ranging from 0 (low) to 1 (high), for each prediction. Scores were esti-
mated based on the collection of intra- and interdrug class distances 
among our reference drug profiles. Compounds were re-annotated  

as unclassified if their predictions had low confidence scores (a thresh-
old score of 0.1 was heuristically chosen based on calibration with the 
NCI-approved oncology drug of known mechanism; Supplementary 
Fig. 7 and Supplementary Table 3). Finally, we identified hit com-
pounds. Hits were defined as compounds not annotated by the control 
class DMSO; that is, hits are bioactive, but may not necessarily be near 
to known drug classes. Taken together, our approach allowed us to 
predict which compounds have activity different from DMSO, predict 
whether they belong to known or novel drug classes, and prioritize 
compounds for validation based on confidence scores.

Using our strategy, we identified 429 primary hit compounds from 
our diverse compound libraries (Fig. 3 and Supplementary Fig. 8). 
(We note that there is always a tradeoff between favoring precision 
versus recall for identifying hits in screens. Though favoring recall 
has the potential advantage of missing fewer candidate compounds, 
for this study we chose to favor precision to demonstrate the ability 
of our ORACL to identify high quality—rather than high numbers 
of—hits in different drug classes.) To filter out primary hits that might 
have induced weak phenotypes, these 429 primary hits were rescreened  
(secondary screen) at the highest five concentrations of each  
reference drug. After this step, 175 high-confidence “secondary hits” 
remained (Fig. 3b, middle pie chart), which comprised: 69 unclassified 
compounds; and 106 compounds classified across 6 of our 10 refer-
ence drug classes (49 DNA inhibitors, 45 MT (microtubule) inhibi-
tors, 5 mTOR inhibitors, 4 proteasome inhibitors, 2 histone deacetylase 
(HDAC) inhibitors, 1 Hsp90 inhibitor; Fig. 3b, bottom pie chart).

Validation of identified hits from the screening
We next investigated the accuracy of our secondary hits.  
We began with our two smallest predicted classes: Hsp90 and HDACs. 
Gratifyingly, identified hits in these two classes both had literature 
support. In the Hsp90 class, the compound NSC330500 (macbecin 
II) was shown previously to be an Hsp90 inhibitor41. In the HDAC 
class, compounds NSC701852 (from the NCI oncology drug set) and 
vorinostat (Zolinza; from the Prestwick library) were different names 
for the same compound (suberoylanilide hydroxamic acid), a known  
HDAC inhibitor42.
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a bFigure 3 Compound hits across multiple drug 
classes are identified from a single-pass screen. 
(a) Shown are LDA projections of phenotypic 
profiles for reference drugs and compounds in 
batch 1 (NCI) and batch 2 (Prestwick and 8K). 
Profiles were computed by concatenating data 
from 24 and 48 h. Each point represents the 
projected profile for a tested compound and 
concentration. Reference drugs are colored 
according to drug classes. Hits and non-hits are 
shown as black or gray dots, respectively.  
(b) Summary of screen: proportion of primary 
(top) or secondary high confidence (middle) 
hits, and distribution of predicted drug classes 
for hits (bottom). DC, discriminant component.

Figure: Primary hits (429 total) defined as non-DSMO classified (whether
to a known class or not)

Joseph Boyd Journal Club 15/05/18 20 / 21



Experimental validation

A secondary screen on the primary hits was performed to
eliminate weak phenotypes (precision over recall) leaving 175
secondary hits

They are then able to validate HDAC directly through
literature (gratifyingly)

The others are validated through a series of secondary
experiments
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